ECON 405 ## **Economic Growth and Development** 26 April 2016 Dr. Yetkiner ## Midterm ## (The Solow Model of Economic Growth) - **1.** (50 Points) Suppose the production function of an economy is characterized by $Y_t = K_t^{\alpha} \cdot L_t^{1-\alpha}$, where $L_t = e^{nt}$. - **a**. (**5 Points**) What is the intensive form of the production function? **b.** (15 Points) Starting from the Fundamental Equation of Growth (FEG), find the steady-state level of k_t , given that $\delta > 0$, n > 0, and $I_t = s \cdot Y_t$. c. (10 Points) Find consumption per worker at steady state, c_{ss} . d. (10 Points) What is the "golden rule of capital accumulation" / "golden saving rate"? **e**. (10 Points) Suppose s=0.24, $\alpha=0.25$, $\delta=0.04$, and n=0.02. Find numerical values of k_{ss} , y_{ss} and c_{ss} . - **2.** (10 Points) Suppose that the production function is characterized by $Y_t = A \cdot K_t^{1/3} \cdot L_t^{2/3}$, where A = 3 is a technology parameter. - **a**. (**5 Points**) Find MPP_K . - **b**. (**5 Points**) Find *MPP*_L. 3. (20 Points) Suppose that aggregate production function of an economy is characterized by $Y_t = (K_t^{0.5} + L_t^{0.5})^2$, where Y_t is output, K_t is capital, L_t is labor. Determine whether this production function satisfies Inada conditions. **4.** (30 Points) Suppose that you are given a Solovian model in which the production function is characterized by $Y_t = K_t^{\alpha} \cdot (A_t \cdot L_t)^{1-\alpha}$, where $L_t = L_0 e^{nt}$ and $A_t = A_0 e^{xt}$. Discuss in detail how this framework is used in **testing** differences in standards of living (level of economic development) across countries and income convergence. In short, discuss empirical use of the Solovian growth framework.